Classifier Combination for Improved Lexieal Disambiguation
نویسندگان
چکیده
One of the most exciting recent directions in machine learning is the discovery that the combination of multiple classifiers often results in significantly better performance than what can be achieved with a single classifier. In this paper, we first show that the errors made from three different state of the art part of speech taggers are strongly complementary. Next, we show how this complementary behavior can be used to our advantage. By using contextual cues to guide tagger combination, we are able to derive a new tagger that achieves performance significantly greater than any of the individual taggers.
منابع مشابه
Modeling Consensus: Classifier Combination for Word Sense Disambiguation
This paper demonstrates the substantial empirical success of classifier combination for the word sense disambiguation task. It investigates more than 10 classifier combination methods, including second order classifier stacking, over 6 major structurally different base classifiers (enhanced Naïve Bayes, cosine, Bayes Ratio, decision lists, transformationbased learning and maximum variance boost...
متن کاملClassifier Combination for Improved Lexical Disambiguation
One of the most exciting recent directions in machine learning is the discovery that the combination of multiple classifiers often results in significantly better performance than what can be achieved with a single classifier. In this paper, we first show that the errors made from three different state of the art part of speech taggers are strongly complementary. Next, we show how this compleme...
متن کاملCombining Classifiers for word sense disambiguation
Classifier combination is an effective and broadly useful method of improving system performance. This article investigates in depth a large number of both well-established and novel classifier combination approaches for the word sense disambiguation task, studied over a diverse classifier pool which includes feature-enhanced Näıve Bayes, Cosine, Decision List, Transformation-based Learning and...
متن کاملTheme: A Study of Classifier Combination and Semi-Supervised Learning for Word Sense Disambiguation
1. Aims Word Sense Disambiguation (WSD) involves the association of a polysemous word in a text or discourse with a particular sense among numerous potential senses of that word. In my thesis, we present a study of classifier combination and semi-supervised learning for WSD, which aim to boost supervised WSD and improve accuracy of WSD. In addition, we also work on context representation and fe...
متن کاملExemplar-Based Word Sense Disambiguation" Some Recent Improvements
In this paper, we report recent improvements to the exemplar-based learning approach for word sense disambiguation that have achieved higher disambiguation accuracy. By using a larger value of k, the number of nearest neighbors to use for determining the class of a test example, and through 10-fold cross validation to automatically determine the best k, we have obtained improved disambiguation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002